Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rep Prog Phys ; 86(5)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36821855

RESUMEN

Hydrides of actinides, their magnetic, electronic, transport, and thermodynamic properties are discussed within a general framework of H impact on bonding, characterized by volume expansion, affecting mainly the 5fstates, and a charge transfer towards H, which influences mostly the 6dand 7sstates. These general mechanisms have diverse impact on individual actinides, depending on the degree of localization of their 5fstates. Hydrogenation of uranium yields UH2and UH3, binary hydrides that are strongly magnetic due to the 5fband narrowing and reduction of the 5f-6dhybridization. Pu hydrides become magnetic as well, mainly as a result of the stabilization of the magnetic 5f5state and elimination of the admixture of the non-magnetic 5f6component.Ab-initiocomputational analyses, which for example suggest that the ferromagnetism ofß-UH3is rather intricate involving two non-collinear sublattices, are corroborated by spectroscopic studies of sputter-deposited thin films, yielding a clean surface and offering a variability of compositions. It is found that valence-band photoelectron spectra cannot be compared directly with the 5fnground-state density of states. Being affected by electron correlations in the excited final states, they rather reflect the atomic 5fn-1multiplets. Similar tendencies can be identified also in hydrides of binary and ternary intermetallic compounds. H absorption can be used as a tool for fine tuning of electronic structure around a quantum critical point. A new direction is represented by actinide polyhydrides with a potential for high-temperature superconductivity.

2.
ACS Nano ; 16(10): 16402-16413, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36200735

RESUMEN

One-dimensional metal-organic chains often possess a complex magnetic structure susceptible to modification by alteration of their chemical composition. The possibility to tune their magnetic properties provides an interesting playground to explore quasi-particle interactions in low-dimensional systems. Despite the great effort invested so far, a detailed understanding of the interactions governing the electronic and magnetic properties of the low-dimensional systems is still incomplete. One of the reasons is the limited ability to characterize their magnetic properties at the atomic scale. Here, we provide a comprehensive study of the magnetic properties of metal-organic one-dimensional (1D) coordination polymers consisting of 2,5-diamino-1,4-benzoquinonediimine ligands coordinated with Co or Cr atoms synthesized under ultrahigh-vacuum conditions on a Au(111) surface. A combination of integral X-ray spectroscopy with local-probe inelastic electron tunneling spectroscopy corroborated by multiplet analysis, density functional theory, and inelastic electron tunneling simulations enables us to obtain essential information about their magnetic structures, including the spin magnitude and orientation at the magnetic atoms, as well as the magnetic anisotropy.

3.
ACS Nano ; 16(7): 11182-11193, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35770912

RESUMEN

We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.

4.
ACS Nano ; 8(7): 7318-24, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24884035

RESUMEN

We report a straightforward method to produce high-quality nitrogen-doped graphene on SiC(0001) using direct nitrogen ion implantation and subsequent stabilization at temperatures above 1300 K. We demonstrate that double defects, which comprise two nitrogen defects in a second-nearest-neighbor (meta) configuration, can be formed in a controlled way by adjusting the duration of bombardment. Two types of atomic contrast of single N defects are identified in scanning tunneling microscopy. We attribute the origin of these two contrasts to different tip structures by means of STM simulations. The characteristic dip observed over N defects is explained in terms of the destructive quantum interference.

5.
Phys Rev Lett ; 101(18): 185502, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18999838

RESUMEN

We determine the equation of state of stoichiometric FeO by employing the diffusion Monte Carlo method. The fermionic nodes are fixed by a single Slater determinant of spin-unrestricted orbitals. The calculated ambient-pressure properties (lattice constant, bulk modulus, and cohesive energy) agree very well with available experimental data. At approximately 65 GPa, the atomic lattice changes from the rocksalt B1 to the NiAs-type inverse B8 structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...